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. : ABSTRACT

Conventional canonical methods distinguish between the

3

two variable sets Dbeing analyzing, b%f“the methods do not

.

attempt to optimize the variance from a given variable set
that will be contained in the final solution. In this respect

canonical methods are said the be '"symetric." The paper

proposes two non-symetric, canonical-like techniques that can

7be’employed when theoretical oi/pzility considerations suggest

that one variable set (usually the griterion set) should be
emphasized over the other variable set. The criteria that the

two methods meet are discussed, as are various software

4

considerations.




Al
‘

Kerlinger (1973, p. 652) has suggested that "it 1is not
easy” to find research studies that have used canonical

analysis. In. earlier vyears, of course, the calculations

involved were prohibitive. Today, even with computer
facilities and programs available, the method is evidently not
’ /

well known. This 1is regrettable, because some research’

problems almost demand 3canoﬁical analysis." More recently,
. ‘ .

Thorndike (1977, p. 76) expressed similar sentiments: "Given

the substantial theoretica} literature on canonical analysis,

~

\ it is surprising 'to find that the technique has seen
. .

.

relatively infrequent use by researchers studying substantive

«

problems. Instances where the methods of cangnical analysis

Cem 8

; .‘have been applied rather than .studied foratheir own sake are
relatively. rare, (but on the increase)." Still more recently,

C . & ‘ "o . .
Kettenring (1982, p. 355) noted that "since canonical analysis

1 v " » . . »
is usually considered to be one of the "major methods” of
\ ) . 4 . ®
I : multivariate analysis, it is perhaps, surprising that this . p

| * technique does not in fact play a larger role in data
analysis:"’ .

¢ . Several possible causes /for a reticience to  apply

~

canonical methods have been cited, including the complexity of

canonical mathematics (Thombson, 1982, p. 467) and

difficulties 1in interpieting canbnicgl results (Thompson,
1980a, pp. 16-17).. However, Cronbach (1971, pp. 489-490) Mes

argued that "statistical devices such as  canonical

’ - g
. .
)
.
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correlation, for handling handling several. predictors and

LY L]
several criteria simultaneously, are not approptiate for the,
Y
decision-oriented study... Utility,depenas upon values, hot

12

upon the statistical connections of scores." Kettenring (1982,

p. 365) made a similar point:’ “"To achieve its potential,
. 7/

better methods are needed for selecting ‘canonical variables’

~which have practical as well as theoretical inte;est and forx

making statistical inferences about them." These views stand
somewhat in contrast with Levine’s (1977, p. 8) position that

"especially with respect to canoniéal correlation, there seem
to be relatively few remaining puzzleg& to be solved."

-

‘ Y
The purpose of this paper is to present an extension of

those canonical methods which have traditionally been

available to researchers. The extension will be discussed in

AY
4 ! 4 . -
the context of a concrete heuristic example. However, some

discussion -of more conventiornal canonical methods (Hotelling,
1935) is required to form the framework for the presentation.
L]

The Logic of Canonical Analysis
N

Canonical corr®lation analysis 1is employed to study
relationships between two variable sets when each variable set
consists.of at least two variables. Thus, Table 1 p{esenés
the data for what is the simplest canonical case, since only
two criterion varigbles, X énd Y, and only T two predi%tor

-

variables, A and B, are involved. Of course, these data are

~

[

1




presented onI§

t

4

The

;first

involves ‘ the

matrix. A syme

.

of wvariables

derlved from th

& Lohnes, 1971,

in Table 2. Th

13

principal comp

()

caqonical cor

’

eigenvalues” whi

- hypothetical sample size (2'

Page 3

for the purposés of discussion, since the

='1ox is absurdly small. '

INSERT TABLE 1 ABOUT 'HERE,

A3 13 rd » » ’ (3
step in & .canonical correlation analysis:

qalculétion .of the intervariable correlatiqé

-~

tric matrix of reduced rank equal to the number

. ‘

in the smaller of.the two variable sets is then-

e 1ntervar1able correlatlon matrlx (see Cooley

176 for details). This. matrlx 1s presented

§ A

p.

. !

'matflx

e elgenvalues of the Table 2 (as' some

reader§ may wish to ver1fy by sﬁbjedtlng ﬁpe matrlx to ¥

onents analys1sl :each represent a squared

g 13 . g k

relation coefficient. Since \the. nupber ‘of‘
' N s ' “ )

ch can bé calculated .for such a matriy equals

. the " number of‘\?bws_(or columns) in‘the matrix, it should "he
'clear that the maxrmum number ’or canonlcal correlatron'
' coeffiEients which can  bhe de:1ved for a-data Set equals the.
-
number of variables in the smalier of the two _ varlable _ sets.
Because in case Dboth. variable 'sqts, consist of two

variables, only

calculated.

this

two canonical. correlation coefficients’ can. be

-

»

INSERT TABLE 2 ABOUT .HERE.

0_(

Sob
A

' H
A squared canonical correlation coefficient indicates the -

proportion

-

two variable, se

Y
of

variance which two compOS1tes derived fr

ts linearly share. The composites are

s

om the

&erlved
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13
by multiplying the 2 scores of each pérson on_each'yariable by

the corresponding canonical function coefficients. Thus, a

. . canonical correlation —coefficient ™ is simply the Pearson
product~moment bivariate correlation between two °linear 'l

composites derived from the two variable sets. . l

-
[

Table 3 provides an illustration of these calculatious.
. »

SR The ,table only presents the coefficients for the first

‘canonical function, although it has already been noted that a

. -
N .second function could have been calculated. The canonical

¢ ¢

a - P dorrela%iqn is the bivariate correlation between the two table

L. ~

columns - headed ° “"Criterion Composite" and "Predictor

- * - . 3 J
Composite." These 10 pairs of values are plotted in the Figure

! -, % .1 scattergram. The figure also presents the regression line

for the two sets of 10 composites. Since the composites are

’ . — . .
. - themselves also fin 7z score form, the regression line passes
. N R . / ‘
° - <through ‘the mean ¢f both composites, i.e., the X-Y intercept,

aﬂé( the -line's'slope (.305) equals the bivariate Sorrelation
between the two 7omposites and also the canonical ‘correlation
Lo between the two variable sets.
s Lo INSERT TABLE 3 AND FIGURE 1 ABOUT HERE.

v
Y - -
» N
,

Somé<Non—symetric Canonical-like Methods .

A

'

¢

SR . * . As the previous discussion suggeésts, conventional

canonical methods derive equation weights which optimize the ; .

"icorrelations between the canonical composites. Conventional

)
.
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i , =
methods thus give similar consideration to.both vaqiable‘sets
when deriving function coefficients, i.e., the methods

distinguish betwee# the predictor and the.criterion variable -
- . ¥
sets but do not emphasige one variable set over the other. In r~
\ N '

this respect conventional canonical me$hods may be said to be.

. . . \

"symetric." These features of conventional canonical analysis
. s

are disturbing in research situations where the researcher may

wish to emphasize one variable set over the other. Two

"non-symetric" methods  of attending to variaﬁ&e set, '
{ . distipctions will be presented here i;~ the context of a
7o concrete heuristic example. B
/ - X ’ 3 ’ )
' The correlation matrix presented in tﬂ;. boétom triangle

“

of the Table 4 matrix prdvides the heuristic. ‘The data

(n = 235) were reported‘ﬁy Thompson (1980h) ands involved ;;3
4\~\sets of variables respectively of size.fgur,and 10. Table 5
presents the results obtained by analyzing the data with
conventional, symetric canonical methods. The sum/pf tﬁe four \
squared canonical éorrelation coefficients for the  Table 5
results was .593. Since conventional functions are
uncorrelated, the ‘squared correlations can be added to

a

determine the cumulative proportion 6f information shared by
\ ’

\

all-the possible canonical composites that could be derived s

/- from & data set in which the smallest variable set contained

four variables. : )

INSERT TABLES 4 AND 5 ABOUT HERE.  #-

.
N
.
¢ ~
-
.
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, - £
Suppose, however¥, ‘that, the researcher wishes “to derive

BN function weights for ‘the 10 criterion vatiables subject to the

» . -
~

restriction that all of the variance in the criterion
1 - .
variables must be represented 'in the final 5olution. One - .

—

possible way to do this 1is to employ “criterion variable

weights such as those presented in Table 6. These weights

imply that y multiple regression analyseé were .conducted

¢ [}

separately for each of the y criterion variables. -

. . 4
< INSERT TABLE 6 ABOUT ‘HERE.
~ Y l .
The squared mulﬁip%g correlations from Table 6 sum to .
! ] . p
.660. However, this result overestimates the cumulative - .

portion of information shared by the score composites, because

)

/ ' °
the Table 6 functions are.not uncorrelaq?d. The argument that

these, functions are correlated should seem reasonable since

r ‘

the criterion variable weights were designated without

]

CRY

r
‘considering the correlations among the variables.

- .

However, it is possible to provide a non-symetric method

which (a) employs all the variance in the criterion variables

. (presuming, as will usually be the caée, that this 1is the

variable set of the most interest to the researcher), (D)
\ .

. sheds light on the strycture underlying the correlations among
the criterion variables, and which (c) allows uncorrelated

functions to be defined, at least when the predictor variables

are uncorrelated. The ' method requires three steps. First,
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-

the intradomain criterion correlations are subjected to a

. full-rank, . principal _éomponents 'ana}ysis, using ‘a readily

available rouéineﬁ froft a computer package such as SP?S

N ’, ~
(TYPE=PAl). By definition, a full-rank, principal components
1 " '
solution contains all of the variance \pfésept in thHe "y

criterion variables. Second, the orthogonal components are
rotated to some orthogonal criterion (in this case Varimax),
and factor scores are calculated (scores are requested in SPSS
with the inclusion of “FACSCORE“. on )the proceduré -card).
Finally, correlation coefficients among these factor scores
and the predictor variables are computed (see upper triangle
of the Table 4 matrix) and all possible y multiple regressiqn
equations are caléulated. Again, routints for performing this
stgp of the analysis are readily gv;ilable. The results
produced in this manner for the heuristic data are presented
in’ Taﬁle 7. The function Q;ights for the criterion variables
.are the "f@c;or score coeffic{ents" (obtained from SPSS during
‘the principal components step of the analysis merely by
requesting ETATISTIC 7) derived by ﬁostmultiplying ' the
inverted intradomain 'criterion variable ° correlation

coefficients by the rotated principal components matrix;- the

function coefficients for the predictor variables ‘are the beta

weights derived from the regression analysis.

-~

INSERT TABLE 7 ABOUT HERE.

. , .

as

A
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Since in this case the four predictor variables happened
to Dbe uncorrelated, .and since this non-symetric procedure
always produces uncorrelated criterion composites, the

functions -themselves are uncorrelated. Thus, the sum of the

squaled multiple correlations was .593, just as the sum of the
«squajred canonical ‘correlation coefficients was also .593 when
- ) : ! .

conVientional canonical functions were computed.
. . : _

'
- . -

‘ y , o
A second and even mdre elegant non-symetric method can be
: !

proposed. This method (é) employs all the variance in the
criterion variables, ﬂb) sheds 1light on, the ‘structure
underlying the sorrelations among the éritefion variables, (c)
allows orthogonai functions to bel defined, and (4d) is
"confirmatory" in th?tﬁ a gfiofi expectations regarding the
criterion varial?les are considered. This last element is

responsive to Cronbach’s (1971) previously mentioned utility

N -

concerns and can minimize the extent to which the solution’

cépitalizes on sampling error. However, unlike the previously

discussed procedures, this\ second me thod can not be
) "

implemented solely with the use of widely available
4 .

[

statistical\packages such as SPSS.

The procedure . requires four steps. First, the

intradomain criterion correlations are subjected to a
, ¢

full-rank principal components analysis. Second, the

components are rotated to a position of "best fit" with an a

€

A
)
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»

priori defined “tarﬁ?t“ matrix (for an example see Thompson &

Pitts, 1981/82), typically consisting of ones, zeroes, and

£

negative ones. This _rotation can be performed using thg

-~

computer program provided by Veldman (1967).: Third, factor

scores are computed using the least Equares algorhyghﬁ:

¥ *

.

‘

_1 . .
Z R cC. =PF ., -
NxV VxV Vx NxF

where Z refers to the V scores of the N people in the scores’
/ standardized form, R is the intervariable correlation matrix,

"and C is the prihcipal components matrix derived in the

previous step. _Thg'calcuiation of these factor scores can be
N : ’ . .

facilitated at Most computing facilities by thie use fairly

"user friendly" utility packages such as IMSL. Finally, the

v

4

correlation coefficients among the y factor scores and the

predictor -variables are computed and all possible y multiple

regression equations are computed. '

4

i Discussion
J -
The non-symetric methods suggested here can provide, at

/o

least in some instancdes, both substantive and"hgufigtic
benefits when compéred with coﬁvenbional canonical methods;f
The non-symetrié - metheds augment sgveral very ‘ﬁélpful
extensions of conventional canonical method0109y,_\including‘

most notably stepwise techniques (Rim, 1972; Thompson, 1982),

part and partial canonical methods (Lee, 1978), and redundancy

3
.

J

<

Y

N
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Of ecourse, when the

~

?nalysis ‘(van den Wollenberg, 1977).
non symetric methods are applled for the purposes -of .actual
substantlve inquiry, 1it° becomes important to supplement the

énalysis by the computation .of tHe variables”* structure

‘.‘ ',m‘ RPN .

O |

coeffictents (see Levine, 1977, p..20). The reader is also s

1

-

cautioned that experimentwise Type 1 error rates are inflated

‘¢

by the use of traditional regression test statistics with the’

non-symetric methods. However, when . the functions are

uncorrelated, as they were here, the exact experimentwise

error rate would be: alpha*.=\l - ﬁ, where k equals
((1 - alpha) Eaised-to~the y power), where y is the number of
criterion variables. A reasonable approach in such a case

AN

’
might be to, test each function at the alpha/y level of

»

statistical- significance. - . ' ‘}

Ths non-symetric methods presented here will be most
helpful when,thefe are clear theoretical distinctions between
the predictor and the criterion variable sets, nand Qhen the
research s1tuat10n.1mp11es thq?xopt1m1z1ng the- varlance of the

cr1ter10n variables is at least as 1mportant as optimizing the

correlation between the variable lséts' composites. The

-

non-symetric methods will also be most appropriate when there

‘ . _ Page 10

%

is a definite interest in exploratory (the wvarimax rotated .

[N

solution) or ‘“confirmatory" (the "best fit" solution)

investigation of the structure underlying the the criterion

variables.. Thus, the techniques will be paftiéﬁiarly potent

s




\

here), because then a few composites can contain the
. F 4

. preponderance of the criterion variables” variance, and a more

. . ‘ . . A
- parsimonious solution will result.

\

But the non-symetric methods are “also valuable to the
extent that they may hélp to demystify conventioﬁal canonical
methods. It has been noted that canonical analysis is ¢
essentially a principal | components analysis of a particularq
matrix derived from the intervariable correlation matrix
(e.g., Table 2). Similarly, the non-symetric methods relied

& heavily upon the use of princtpal compoggnts analyses.‘ Thus
it ecan be suggested; that the symetric and the non-symetric

methods are somewhat analogous. The'se conceptual 1linkages

among the techniques merely suggest, as Knapp (1978) has

shown, that canonical methods represent a most-general

data-analytic system, and that canonical methods subsume all

parametric statistical techniques. : -

AW v

\ '3
A
I \ Page 11
| " '
“when the criterion variables are’themselves correlated (as’
. ) N
they tended not ' to be in the heuristic example presented
¢
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Table 1
A
' t Hypothetical Data Set
Case X - Y A . B -
1 1(-0.72) 9(+1.36)» 4(+0.08) 6(+0.33)
o 2 5(+1.90) 4(-0.15) 0(-1.02) 8(+0.88)

;;‘? o 3+ 3(+0.59) 9(+1.36) 6(+0.64) 0(-1.33)
4 3(+o.59)‘ 4(-0.15) 6(?6.64)',9(+1.;6)
5 3(+0.59) 3(-0.45) 9(+1.46) 0(-1.33)
© 6 2(-0.07) 2(-0.76) 9(+1.46) 0(-1.33)
7 2(-0.07) O0(-1.36) 2(-0.47) 9(+1.16)
8 0(-1.38) 2(~0.76) 0(-1.02) .5(+0.06)

9 0(-1.38) 9(+1.36) 1(-0.74)° 6(+0.33)

10 2(-0.07) 3(-0.45) 0(-1.02) 5(+0.06)

Note: 7 score equivalents of the unstandardized data are

4

- v

> presented in parentheses. "
or .

Table 2' ‘ B i '
Analyzed Matrix

. ' ’ . .08 .01l

.048 . .027
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Table 3
¢ Calculation of Composites |

@

t

Criterion Predictor

Case @X Fl 7Y F2 Composite Composite  ZA F3” 7B F4

-

(-0.72) (F1)+(+1.36) (F2) = -0.97; 40.42

[}

38}

W

>

(40.59) (F1)+(-0.15) (F2)

u
e Il

(+0.59) (F1)+(-0.45) (F2)

(+1.90) (F1)+(-0.15) (F2) = +1.82, -0.49

= (+0.08)(F3)+(+0.33) (F4)

= (-1.02) (F3)+(+0.88) (F4)

Y . -
« (40.59) (F1)+(+1.36) (F2) = 40.26 3_' -0.43 = (+o.:4) (F3)+(-1.33) (F4)

+0.59 | +1,92-= (}0.64)(F3)+(+1.16) (F4)

+0.65 "+O.6ﬁ(+1.46)(F3)+(—1.33)(F4)

T (<0.07)(F1)+(-0.76) (F2) = 40.10  40.64 = (+1.46) (F3)+(-L.33) (F4)

6
7 (-0.07)(F1)+(-1.36)(F2) = +0.2 .49
8 -1.14 H1.27

9 (-1.38)(F1)+(+1.36)(F2) = -1.59 -0.65

(-1.38)(F1)+(-0.76) (F2)

10. (-0.07)(F1l)+(-0.45)(F2) = 40.04 -1.27

= (-0.47)(F3)+(+1.16) (F4)

1-;.02)(F3)+k+o.06)(F4)

(-0.74) (F3)+(+0.33) (F4)

(-1.02) (F3)+(+0.06) (F4)

Note: The canonical function coefficients are respectively: "Rt =

40.94; "F2" = -0.22; "F3" = +1.30;

"F4" = +0.94.

55

24

’\i\

e
4'-"?’@‘ ’
I
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' Table 4

Correlation Matrix

Variable

>
w
Q

D Q R 8 T U V W X Y 2

- v

/
INQSTRAT (A) 00 15 10 -16 15 06 22 04 02 03 -12

I
8
8

INCISIVE (B) 00 -- 00 00 -24 24 05 07 13 06 17 04 06 —09

AFFECTIV (C) 00 00 —- 00 16 14 -10 07 -06 07 03 19 -11 16

. STRUCTUR (D) 00 00 00 —- 14 -05 17 04 04 08 10 14 1012 L
\ESSENTIA (Q) <15 05 -10 17 —— 00 00 .00 00 00 00 00 00 00
HUMANISM (R) 16 08 08 -02 00 -- 00 00 00 00 00 00 00 00
'pimmAL (S) 05 08 -13 10 00 00 —— 00 00 00 00 00 00 OO
PROGRESS (T) 09 26 15 -04 00 00 00 —-— 00 o‘o‘oo 00 00 00
RATIONAL (U) 07 15 -07 04 00 00 00 00 —-- 00 00 00 00 00
EXISTENL (V) -10 -13 16 12 oo‘oo‘ooko} 00 — 00 00 00 00
WARM (W) 03 05 20 12 -01 05'-14 13 -04 =14 -- 00 00 OO

SCHOLARL (X) 06 20 01 09 02 10 14 12 07 -14 00 -- 00 00 : .

2%

RIGOROUS (Y) 22 06 -09 10 08 05 15 -06 07 -01 00 00 =-— 00

IMPOTENT (Z) 13 -26 18 15 Ol 04 -08 07 ~06..25 00.08 00 --

Decimals cmitted. ‘ &
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Table 5 "
~ , Canonical Results

Variable I, 1II IIT IV : |
INQSTRAT -.38 -.66 .49 .43

INCISIVE -.87 .03 -.42 -.25

) AFFECTIV .25 -.70 =-.17 -.65

STRUCTUR .18 -.28 ~-.75_ .57
'ESSENTIA‘~ .07 .32 -.62 .24

HUMANISM -.23 -.29 .20 -.10 .

ERENIAL -.09 .03 -.21 .40 ]

ROGRESS 2.48 »~.32. 205 -.41 .

RATIONAL -.29 -.03 -.13 .19

r - <
EXISTENL .35 -.13 -.50 -.25
‘ WARy .12 -.41 -.49 -.11 _ .
SCHOLARL =-.23- -.13 =-.40- .02
K § RIGOROUS -.30 ,-.29 .14 .52
IMPOTENT .40 -.60 .17 .38
4 ¢
2 -
Rc .210 .176 .113 » .094
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“Table 6

. * Regression Solutions

e 4

Variable I II III- IV vV VI VII VIII 1IX X

INQOSTRAT -.15 .16 .05 .09 .07 -.10 .03 .06 .22 .13
INCISIVE .05 .08 .08 .26 .15 -.13 .05 .20 .06 -.26 x

AFFECTIV -.10 .08 -.13 .15 -.07 .16 .20 .01 -.09 .18 -

STRUCTUR .17 -.02 .10 -.04 .04 ‘512 .12 ,09 .10 .15

ESSENTIA 1.00 .00 .00 .00 .00 .00 .00 .00 .00-. .00

Lo e .
HUMANISM .00 1.00 .00 .00 .00 .00 .00 .00 .0Q .qg/’——/’/ﬂ
. v

PERENIAL .00 .00 1.00 .00 .00 .00 .00 .00 .00 .00 . : |
PROGRESS .00, .00 .00 1.00 .00 .00 .00 .00 .00 .00

RATIONAL .00 .00’ .00 .00 1.00 .00 .00 .00 .00 .00

©

EXJSTENL .00 .00 .00 .00 .00-1.00 .00 .00 .00 .00
WARM .00 .00 .00 .00 .00 .00 1,00 .00 .00 '.00

E

SCHOLARL .00 .00 .00 .00 .09 .00. .00 1.00 .00 .00
RIGOROUS .00 .00 .00 .00 .00 .00 .00 .00 1.00 .00

IMPOTENT .00 .00 .00 .00 .00~ .00 .00 .00 .00 1.00
@ - .o
“. 2- '. -~ o
. R .6%@ .039 .035 .098 .034 .069 -.057 ,054 .071 .138

~




\,

/

\

N

~

- :;’

-e

. Variable
INQSTRAT

INci§IVE

AFFECTIV

I
.15
-.24

.16

"

»

* Table 7

Non-symetrie Technique Results

II

.10

.24

.14

. \ ,
STRUCTUR, .14 -.05

ESSENTIA
HUMANISM

PERENIAL

PROGRESS

RATIONAL
EXISEENL
WARM

SCHOLARL

RIGOROUS

JIMPOTENT
x

2
R

.00 .00
Z02Y .01
.04 .0
.04:1.02
.03 .00
~.14 -.02
-.01 -.07
~.02 -.06
.do .03
1.03 ,04
(.123 .089

III

-.16 -

105

-.10

.17

1.00

.066

ot

»
A

Iv .V VI VII VIII
.15~ .06 .22 .04 .02,
07 .13 .06 [17 .04
07 =.061-.07 .02 .19

-.04 .04 .08 .10 .14

4 3
.00 .00 -.04 -.01 .01

1.01 .00 -.03 -.05 -.03

.09 .01 -.08 =07 ".07
.00 .00 .03 -.06 -.07
.00 1.01 -.04 -.04 .02

_ .00 -.01 .00 .08 .07

-.03 .02 -.01 .01 1,02

-)05 -.04 .01 1.03 .01

=03 -.04 1.02 .0l -.01

-.02 403 .00 -.02 -.01

035 .028 .065 ,040 .057

-
52

-
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IX X
.03 -.12
.06 -.09
-.11 .16
.10 .12
.01 .00
.00 .00
1.03 -.01
L 3
.00 -.02
.01 -.01
-.01 1.04
.07, .08
-.07 .08
-.08 .01
.04 -.14°
.027 .062"

‘t&

™

A
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- Figure 1 -

Canonical Composites

Scattergram of

~

1.05

0.15

-0.75

-1.65

-2.55

OHERXEHOR

ODOEAMOUMHERM

Pfl

-3.00 +

-2.10 -1.20 -0.30 0.60 1.50 2.40

-3.00
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